Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.489
Filtrar
1.
Actas Dermosifiliogr ; 115(4): T393-T397, 2024 Apr.
Artigo em Inglês, Espanhol | MEDLINE | ID: mdl-38331168

RESUMO

Neurosarcoidosis is an uncommon but potentially serious disease of the central nervous system that can cause major sequelae. We analyzed the presence and diagnostic usefulness of specific cutaneous lesions in 58 patients with neurosarcoidosis. Sixteen patients (27.6%) had specific cutaneous lesions (14 men and 2 women; mean age, 50 years [range, 20-84 years]). Twenty-four types of neurological lesions were observed: cranial neuropathy (n=7), parenchymal lesions (n=4), meningeal lesions (n=3), myelopathy (n=3), pituitary lesions (n=1), hydrocephalus (n=2), and peripheral neuropathy (n=4). Twenty types of specific cutaneous lesions were observed: maculopapular lesions (n=6), plaques (n=9), lupus pernio (n=1), and scar sarcoidosis (n=4). These last lesions coexisted with maculopapular lesions in 2 patients and plaques in another 2. Specific cutaneous lesions were present at diagnosis of neurosarcoidosis in 13 patients. Recognition of specific cutaneous lesions in a patient with suspected neurosarcoidosis is important as biopsy can accelerate diagnosis.


Assuntos
Doenças do Sistema Nervoso Central , Sarcoidose , Masculino , Humanos , Feminino , Pessoa de Meia-Idade , Doenças do Sistema Nervoso Central/diagnóstico , Doenças do Sistema Nervoso Central/complicações , Doenças do Sistema Nervoso Central/patologia , Sarcoidose/complicações , Sarcoidose/diagnóstico , Progressão da Doença
2.
Brain Res Bull ; 209: 110904, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38387531

RESUMO

The central nervous system (CNS) has been considered an immunologically privileged site. In the past few decades, research on inflammation in CNS diseases has mostly focused on microglia, innate immune cells that respond rapidly to injury and infection to maintain CNS homeostasis. Discoveries of lymphatic vessels within the dura mater and peripheral immune cells in the meningeal layer indicate that the peripheral immune system can monitor and intervene in the CNS. This review summarizes recent advances in the involvement of T lymphocytes in multiple CNS diseases, including brain injury, neurodegenerative diseases, and psychiatric disorders. It emphasizes that a deep understanding of the pathogenesis of CNS diseases requires intimate knowledge of T lymphocytes. Aiming to promote a better understanding of the relationship between the immune system and CNS and facilitate the development of therapeutic strategies targeting T lymphocytes in neurological diseases.


Assuntos
Doenças do Sistema Nervoso Central , Transtornos Mentais , Humanos , Linfócitos T , Sistema Nervoso Central/patologia , Doenças do Sistema Nervoso Central/patologia , Microglia/patologia , Transtornos Mentais/patologia
3.
Neurol Neuroimmunol Neuroinflamm ; 11(3): e200210, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38386951

RESUMO

We present a case of subacute onset progressive encephalomyelopathy in a 77-year-old man with symmetric lateral column signal abnormalities on spinal MRI. We discuss the differential and presumptive final diagnosis along with a review of the postulated disease immunopathogenesis.


Assuntos
Doenças do Sistema Nervoso Central , Idoso , Humanos , Masculino , Doenças do Sistema Nervoso Central/patologia , Medula Espinal/diagnóstico por imagem , Medula Espinal/patologia
4.
Ageing Res Rev ; 93: 102160, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38065225

RESUMO

Central nervous system (CNS) diseases have become one of the leading causes of death in the global population. The pathogenesis of CNS diseases is complicated, so it is important to find the patterns of the disease to improve the treatment strategy. Microglia are considered to be a double-edged sword, playing both harmful and beneficial roles in CNS diseases. Therefore, it is crucial to understand the progression of the disease and the changes in the polar phenotype of microglia to provide guidance in the treatment of CNS diseases. Microglia activation may evolve into different phenotypes: M1 and M2 types. We focused on the roles that M1 and M2 microglia play in regulating intercellular dialogues, pathological reactions and specific diseases in CNS diseases. Importantly, we summarized the strategies used to modulate the polarization phenotype of microglia, including traditional pharmacological modulation, biological therapies, and physical strategies. This review will contribute to the development of potential strategies to modulate microglia polarization phenotypes and provide new alternative therapies for CNS diseases.


Assuntos
Doenças do Sistema Nervoso Central , Microglia , Humanos , Microglia/patologia , Doenças do Sistema Nervoso Central/terapia , Doenças do Sistema Nervoso Central/patologia , Fenótipo
5.
Front Immunol ; 14: 1284986, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38090586

RESUMO

Background: Optical coherence tomography angiography (OCTA) allows non-invasive assessment of retinal vessel structures. Thinning and loss of retinal vessels is evident in eyes of patients with multiple sclerosis (MS) and might be associated with a proinflammatory disease phenotype and worse prognosis. We investigated whether changes of the retinal vasculature are linked to brain atrophy and disability in MS. Material and methods: This study includes one longitudinal observational cohort (n=79) of patients with relapsing-remitting MS. Patients underwent annual assessment of the expanded disability status scale (EDSS), timed 25-foot walk, symbol digit modalities test (SDMT), retinal optical coherence tomography (OCT), OCTA, and brain MRI during a follow-up duration of at least 20 months. We investigated intra-individual associations between changes in the retinal architecture, vasculature, brain atrophy and disability. Eyes with a history of optic neuritis (ON) were excluded. Results: We included 79 patients with a median disease duration of 12 (interquartile range 2 - 49) months and a median EDSS of 1.0 (0 - 2.0). Longitudinal retinal axonal and ganglion cell loss were linked to grey matter atrophy, cortical atrophy, and volume loss of the putamen. We observed an association between vessel loss of the superficial vascular complex (SVC) and both grey and white matter atrophy. Both observations were independent of retinal ganglion cell loss. Moreover, patients with worsening of the EDSS and SDMT revealed a pronounced longitudinal rarefication of the SVC and the deep vascular complex. Discussion: ON-independent narrowing of the retinal vasculature might be linked to brain atrophy and disability in MS. Our findings suggest that retinal OCTA might be a new tool for monitoring neurodegeneration during MS.


Assuntos
Doenças do Sistema Nervoso Central , Esclerose Múltipla Recidivante-Remitente , Esclerose Múltipla , Doenças Neurodegenerativas , Neurite Óptica , Humanos , Atrofia , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Doenças do Sistema Nervoso Central/patologia , Esclerose Múltipla/patologia , Esclerose Múltipla Recidivante-Remitente/patologia , Doenças Neurodegenerativas/patologia , Neurite Óptica/diagnóstico por imagem , Neurite Óptica/patologia , Retina/diagnóstico por imagem , Retina/patologia , Vasos Retinianos/diagnóstico por imagem , Vasos Retinianos/patologia , Estudos Longitudinais
6.
Sci Rep ; 13(1): 16279, 2023 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-37770560

RESUMO

Digital Twin (DT) is a novel concept that may bring a paradigm shift for precision medicine. In this study we demonstrate a DT application for estimating the age of onset of disease-specific brain atrophy in individuals with multiple sclerosis (MS) using brain MRI. We first augmented longitudinal data from a well-fitted spline model derived from a large cross-sectional normal aging data. Then we compared different mixed spline models through both simulated and real-life data and identified the mixed spline model with the best fit. Using the appropriate covariate structure selected from 52 different candidate structures, we augmented the thalamic atrophy trajectory over the lifespan for each individual MS patient and a corresponding hypothetical twin with normal aging. Theoretically, the age at which the brain atrophy trajectory of an MS patient deviates from the trajectory of their hypothetical healthy twin can be considered as the onset of progressive brain tissue loss. With a tenfold cross validation procedure through 1000 bootstrapping samples, we found the onset age of progressive brain tissue loss was, on average, 5-6 years prior to clinical symptom onset. Our novel approach also discovered two clear patterns of patient clusters: earlier onset versus simultaneous onset of brain atrophy.


Assuntos
Doenças do Sistema Nervoso Central , Esclerose Múltipla , Humanos , Pré-Escolar , Criança , Esclerose Múltipla/diagnóstico por imagem , Esclerose Múltipla/patologia , Estudos Transversais , Medicina de Precisão , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Imageamento por Ressonância Magnética/métodos , Doenças do Sistema Nervoso Central/patologia , Convulsões/patologia , Atrofia/patologia
7.
PLoS One ; 18(7): e0288967, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37506096

RESUMO

Recurrent neuroinflammation in relapsing-remitting MS (RRMS) is thought to lead to neurodegeneration, resulting in progressive disability. Repeated magnetic resonance imaging (MRI) of the brain provides non-invasive measures of atrophy over time, a key marker of neurodegeneration. This study investigates regional neurodegeneration of the brain in recently-diagnosed RRMS using volumetry and voxel-based morphometry (VBM). RRMS patients (N = 354) underwent 3T structural MRI <6 months after diagnosis and 1-year follow-up, as part of the Scottish multicentre 'FutureMS' study. MRI data were processed using FreeSurfer to derive volumetrics, and FSL for VBM (grey matter (GM) only), to establish regional patterns of change in GM and normal-appearing white matter (NAWM) over time throughout the brain. Volumetric analyses showed a decrease over time (q<0.05) in bilateral cortical GM and NAWM, cerebellar GM, brainstem, amygdala, basal ganglia, hippocampus, accumbens, thalamus and ventral diencephalon. Additionally, NAWM and GM volume decreased respectively in the following cortical regions, frontal: 14 out of 26 regions and 16/26; temporal: 18/18 and 15/18; parietal: 14/14 and 11/14; occipital: 7/8 and 8/8. Left GM and NAWM asymmetry was observed in the frontal lobe. GM VBM analysis showed three major clusters of decrease over time: 1) temporal and subcortical areas, 2) cerebellum, 3) anterior cingulum and supplementary motor cortex; and four smaller clusters within the occipital lobe. Widespread GM and NAWM atrophy was observed in this large recently-diagnosed RRMS cohort, particularly in the brainstem, cerebellar GM, and subcortical and occipital-temporal regions; indicative of neurodegeneration across tissue types, and in accord with limited previous studies in early disease. Volumetric and VBM results emphasise different features of longitudinal lobar and loco-regional change, however identify consistent atrophy patterns across individuals. Atrophy measures targeted to specific brain regions may provide improved markers of neurodegeneration, and potential future imaging stratifiers and endpoints for clinical decision making and therapeutic trials.


Assuntos
Doenças do Sistema Nervoso Central , Esclerose Múltipla Recidivante-Remitente , Esclerose Múltipla , Humanos , Esclerose Múltipla Recidivante-Remitente/diagnóstico por imagem , Esclerose Múltipla Recidivante-Remitente/patologia , Esclerose Múltipla/patologia , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Substância Cinzenta/diagnóstico por imagem , Substância Cinzenta/patologia , Imageamento por Ressonância Magnética/métodos , Doenças do Sistema Nervoso Central/patologia , Atrofia/patologia
9.
Pan Afr Med J ; 45: 1, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37346919

RESUMO

Introduction: brain atrophy is the reduction of brain volume often accompanied with cognitive changes. Despite the availability of computerized-tomography (CT) scanners in Tanzania, little is known about the magnitude of brain atrophy, its associated confusion state and the risk factors in adults. This study aimed to fill those knowledge gaps. Methods: a retrospective cross-sectional hospital-based survey was conducted in northern Tanzania using a sample size of 384 CT images of adults who underwent brain CT scans in three referral hospitals. CT images were evaluated using a diagonal brain fraction (DBF) method to determine the presence of brain atrophy. Data for other covariates were also collected. Results: we report a prevalence of 60.67% for brain atrophy and 35% for the associated confusion state. Association between confusion state and brain atrophy was statistically significant (χ2 = 21.954, p<0.001). Brain atrophy was prognosticated by: age (adjusted OR: 1.11; 95% CI [1.05, 1.20], p<0.001), smoking (adjusted OR: 6.97; 95% CI [2.12, 26.19], p<0.001), alcohol-consumption (adjusted OR: 11.87; 95% CI [3.44, 40.81], p<0.001), hypertension (adjusted OR: 61.21; 95 CI [15.20, 349.43], p<0.001), type-2 diabetes mellitus (adjusted OR: 15.67; 95% CI [5.32, 52.77], p<0.001) and white matter demyelination (adjusted OR: 13.45; 95% CI [4.66, 44.25], p<0.001). Conclusion: there is high prevalence of brain atrophy and associated confusion state among hospitalized adults in northern Tanzania. Reported prognostic factors for brain atrophy such as age, smoking, alcohol consumption, hypertension, type-2 diabetes mellitus and white matter demyelination could help focus interventions in this area.


Assuntos
Doenças do Sistema Nervoso Central , Doenças Desmielinizantes , Diabetes Mellitus Tipo 2 , Hipertensão , Humanos , Adulto , Estudos Retrospectivos , Prevalência , Tanzânia/epidemiologia , Estudos Transversais , Fatores de Risco , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Diabetes Mellitus Tipo 2/patologia , Hipertensão/epidemiologia , Doenças do Sistema Nervoso Central/patologia , Atrofia/epidemiologia , Atrofia/patologia , Doenças Desmielinizantes/patologia , Imageamento por Ressonância Magnética
10.
Int J Mol Sci ; 24(12)2023 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-37373196

RESUMO

In this prospective longitudinal study, we quantified regional brain volume and susceptibility changes during the first two years after the diagnosis of multiple sclerosis (MS) and identified their association with cerebrospinal fluid (CSF) markers at baseline. Seventy patients underwent MRI (T1 and susceptibility weighted images processed to quantitative susceptibility maps, QSM) with neurological examination at the diagnosis and after two years. In CSF obtained at baseline, the levels of oxidative stress, products of lipid peroxidation, and neurofilaments light chain (NfL) were determined. Brain volumetry and QSM were compared with a group of 58 healthy controls. In MS patients, regional atrophy was identified in the striatum, thalamus, and substantia nigra. Magnetic susceptibility increased in the striatum, globus pallidus, and dentate and decreased in the thalamus. Compared to controls, MS patients developed greater atrophy of the thalamus, and a greater increase in susceptibility in the caudate, putamen, globus pallidus and a decrease in the thalamus. Of the multiple calculated correlations, only the decrease in brain parenchymal fraction, total white matter, and thalamic volume in MS patients negatively correlated with increased NfL in CSF. Additionally, negative correlation was found between QSM value in the substantia nigra and peroxiredoxin-2, and QSM value in the dentate and lipid peroxidation levels.


Assuntos
Doenças do Sistema Nervoso Central , Esclerose Múltipla , Humanos , Estudos Prospectivos , Estudos Longitudinais , Ferro , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Esclerose Múltipla/diagnóstico por imagem , Esclerose Múltipla/patologia , Doenças do Sistema Nervoso Central/patologia , Imageamento por Ressonância Magnética/métodos , Estresse Oxidativo , Atrofia/patologia , Substância Cinzenta/patologia
11.
Nat Commun ; 14(1): 2721, 2023 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-37169749

RESUMO

While the precise processes underlying a sex bias in the development of central nervous system (CNS) disorders are unknown, there is growing evidence that an early life immune activation can contribute to the disease pathogenesis. When we mimicked an early systemic viral infection or applied murine cytomegalovirus (MCMV) systemically in neonatal female and male mice, only male adolescent mice presented behavioral deficits, including reduced social behavior and cognition. This was paralleled by an increased amount of infiltrating T cells in the brain parenchyma, enhanced interferon-γ (IFNγ) signaling, and epigenetic reprogramming of microglial cells. These microglial cells showed increased phagocytic activity, which resulted in abnormal loss of excitatory synapses within the hippocampal brain region. None of these alterations were seen in female adolescent mice. Our findings underscore the early postnatal period's susceptibility to cause sex-dependent long-term CNS deficiencies following infections.


Assuntos
Doenças do Sistema Nervoso Central , Microglia , Animais , Feminino , Masculino , Camundongos , Microglia/patologia , Encéfalo , Doenças do Sistema Nervoso Central/patologia , Interferon gama/genética , Epigênese Genética
12.
Curr Allergy Asthma Rep ; 23(7): 399-410, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37256482

RESUMO

PURPOSE OF REVIEW: Neurosarcoidosis is a rare manifestation of sarcoidosis that is challenging to diagnose. Biopsy confirmation of granulomas is not sufficient, as other granulomatous diseases can present similarly. This review is intended to guide the clinician in identifying key conditions to exclude prior to concluding a diagnosis of neurosarcoidosis. RECENT FINDINGS: Although new biomarkers are being studied, there are no reliable tests for neurosarcoidosis. Advances in serum testing and imaging have improved the diagnosis for key mimics of neurosarcoidosis in certain clinical scenarios, but biopsy remains an important method of differentiation. Key mimics of neurosarcoidosis in all cases include infections (tuberculosis, fungal), autoimmune disease (vasculitis, IgG4-related disease), and lymphoma. As neurosarcoidosis can affect any part of the nervous system, patients should have a unique differential diagnosis tailored to their clinical presentation. Although biopsy can assist with excluding mimics, diagnosis is ultimately clinical.


Assuntos
Doenças do Sistema Nervoso Central , Sarcoidose , Humanos , Biópsia , Doenças do Sistema Nervoso Central/diagnóstico , Doenças do Sistema Nervoso Central/patologia , Granuloma/diagnóstico , Sarcoidose/diagnóstico , Sarcoidose/patologia
13.
J Neurol ; 270(9): 4368-4376, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37219604

RESUMO

BACKGROUND: Enhancing brain parenchymal disease, and especially tumefactive lesions, are an uncommon manifestation of neurosarcoidosis. Little is known about the clinical features of tumefactive lesions and their impact on management and outcomes, which this study aims to characterize. METHODS: Patients with pathologically-confirmed sarcoidosis were retrospectively reviewed and included if brain lesions were: (1) intraparenchymal, (2) larger than 1 cm in diameter, and (3) associated with edema and/or mass effect. RESULTS: Nine patients (9/214, 4.2%) were included. Median onset age was 37 years. Diagnosis was confirmed by brain parenchymal biopsies in 5 (55.6%). Median modified Rankin scale (mRS) score was 2 (range 1-4) at initial presentation. Common manifestations included headache (77.8%), cognitive dysfunction (66.7%), and seizures (44.4%). Sixteen lesions were present in 9 patients. The frontal lobe (31.3%) was most affected, followed by the subinsular region (12.5%), basal ganglia (12.5%%), cerebellum (12.5%), and pons (12.5%). MRI characteristics of the dominant lesions included spherical morphology (77.8%), perilesional edema (100.0%), mass effect (55.6%), well-demarcated borders (66.7%), and contrast enhancement (100.0%; 55.6% heterogeneous). Leptomeningitis was frequently present (77.8%). All required corticosteroid-sparing treatments, and most (55.6%) needed at least a third line of treatment (infliximab used in 44.4%). All patients relapsed (median 3 relapses, range 1-9). Median last mRS was 1.0 after median follow-up of 86 months, with significant residual deficits in 55.6%. CONCLUSION: Tumefactive brain parenchymal lesions are uncommon, usually affect the supratentorial brain along with leptomeningitis, and are refractory to initial treatments with a high risk of relapse. Significant sequelae were encountered despite a favorable median last mRS.


Assuntos
Encefalopatias , Doenças do Sistema Nervoso Central , Sarcoidose , Humanos , Adulto , Estudos Retrospectivos , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Doenças do Sistema Nervoso Central/diagnóstico por imagem , Doenças do Sistema Nervoso Central/tratamento farmacológico , Doenças do Sistema Nervoso Central/patologia , Sarcoidose/diagnóstico por imagem , Sarcoidose/tratamento farmacológico , Sarcoidose/patologia , Imageamento por Ressonância Magnética , Encefalopatias/diagnóstico por imagem , Encefalopatias/tratamento farmacológico , Encefalopatias/patologia
15.
Mult Scler Relat Disord ; 73: 104659, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37004272

RESUMO

BACKGROUND: Myelin oligodendrocyte glycoprotein antibody-associated disease (MOGAD) is a distinct central nervous system (CNS) disorder that shares features with multiple sclerosis (MS) and may be misdiagnosed as MS. MOGAD and MS share a frequently relapsing clinical course and lesions with inflammatory demyelinating pathology. One key feature of MS pathology is tissue damage in normal-appearing white matter (NAWM) outside of discrete lesions, whereas the extent to which similar non-lesional damage occurs in MOGAD is not known and could be assessed using qGRE. The goal of this study was to examine the brains of people with MOGAD using quantitative gradient-recalled echo (qGRE) magnetic resonance imaging and to compare tissue damage with MS patients matched for disability. METHODS: MOGAD and MS patients were recruited to match in terms of age and disability. Similarly aged healthy control (HC) data were drawn from existing studies. qGRE brain imaging of HC (N = 15), MOGAD (N = 17), and MS (N = 15) patients was used to examine the severity and extent of tissue damage within and outside of discrete lesions. The qGRE metric R2t* is sensitive to changes in tissue microstructure and was measured in white matter lesions (WMLs), NAWM, cortical (CGM) and deep gray matter (DGM). Statistical inference was performed with linear models. RESULTS: R2t* was reduced in CGM (p = 0.00047), DGM (p = 0.0055) and NAWM (p = 0.0019) in MOGAD and MS compared to similar regions in age-matched HCs. However, the degree of R2t* reduction in all these regions was less in the MOGAD patients compared with MS. WMLs in MOGAD demonstrated reduced R2t* compared to NAWM but this reduction was modest compared to changes associated with WMLs in MS (p = 0.026). CONCLUSION: These results demonstrate abnormalities in lesional and non-lesional CNS tissues in MOGAD that are not detectable on standard MRI. The abnormalities seen in NAWM, CGM, and DGM were less severe in MOGAD compared to MS. MOGAD-related WMLs showed reduced R2t*, but were less abnormal than WMLs in MS. These data reveal damage to non-lesional tissues in two different demyelinating diseases, suggesting that damage outside of WMLs may be a common feature of demyelinating diseases. The lesser degree of R2t* abnormality in MOGAD tissues compared to MS suggests less underlying tissue damage and may underlie the greater propensity for recovery in MOGAD.


Assuntos
Doenças do Sistema Nervoso Central , Esclerose Múltipla , Substância Branca , Humanos , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Esclerose Múltipla/diagnóstico por imagem , Esclerose Múltipla/patologia , Substância Branca/diagnóstico por imagem , Substância Branca/patologia , Doenças do Sistema Nervoso Central/patologia
16.
Neurobiol Dis ; 179: 106066, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36889483

RESUMO

Although both are myeloid cells located surrounding cerebral vasculature, vessel-associated microglia (VAM) and perivascular macrophages (PVMs) can be distinguished by their distinct morphologies, signatures and microscopic location. As key component of neuro-glia-vascular unit (NGVU), they play prominent roles in neurovasculature development and pathological process of various central nervous system (CNS) diseases, including phagocytosis, angiogenesis, vessel damage/protection and blood flow regulation, therefore serving as potential targets for therapeutics of a broad array of CNS diseases. Herein, we will provide a comprehensive overview of heterogeneity of VAM/PVMs, highlight limitations of current understanding in this field, and discuss possible directions of future investigations.


Assuntos
Doenças do Sistema Nervoso Central , Microglia , Humanos , Microglia/fisiologia , Encéfalo/patologia , Macrófagos , Fagocitose , Doenças do Sistema Nervoso Central/patologia
17.
Glia ; 71(7): 1683-1698, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36945189

RESUMO

There is an urgent need for therapies that target the multicellular pathology of central nervous system (CNS) disease. Modified, nonanticoagulant heparins mimic the heparan sulfate glycan family and are known regulators of multiple cellular processes. In vitro studies have demonstrated that low sulfated modified heparin mimetics (LS-mHeps) drive repair after CNS demyelination. Herein, we test LS-mHep7 (an in vitro lead compound) in experimental autoimmune encephalomyelitis (EAE) and cuprizone-induced demyelination. In EAE, LS-mHep7 treatment resulted in faster recovery and rapidly reduced inflammation which was accompanied by restoration of animal weight. LS-mHep7 treatment had no effect on remyelination or on OLIG2 positive oligodendrocyte numbers within the corpus callosum in the cuprizone model. Further in vitro investigation confirmed that LS-mHep7 likely mediates its pro-repair effect in the EAE model by sequestering inflammatory cytokines, such as CCL5 which are upregulated during immune-mediated inflammatory attacks. These data support the future clinical translation of this next generation modified heparin as a treatment for CNS diseases with active immune system involvement.


Assuntos
Doenças do Sistema Nervoso Central , Encefalomielite Autoimune Experimental , Animais , Camundongos , Cuprizona/toxicidade , Sulfatos/efeitos adversos , Oligodendroglia/patologia , Encefalomielite Autoimune Experimental/induzido quimicamente , Encefalomielite Autoimune Experimental/tratamento farmacológico , Encefalomielite Autoimune Experimental/patologia , Corpo Caloso/patologia , Doenças do Sistema Nervoso Central/patologia , Heparitina Sulfato/uso terapêutico , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças , Bainha de Mielina/patologia
18.
Int J Mol Sci ; 24(4)2023 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-36834599

RESUMO

Psychiatric disorders are highly prevalent brain pathologies that represent an urgent, unmet biomedical problem. Since reliable clinical diagnoses are essential for the treatment of psychiatric disorders, their animal models with robust, relevant behavioral and physiological endpoints become necessary. Zebrafish (Danio rerio) display well-defined, complex behaviors in major neurobehavioral domains which are evolutionarily conserved and strikingly parallel to those seen in rodents and humans. Although zebrafish are increasingly often used to model psychiatric disorders, there are also multiple challenges with such models as well. The field may therefore benefit from a balanced, disease-oriented discussion that considers the clinical prevalence, the pathological complexity, and societal importance of the disorders in question, and the extent of its detalization in zebrafish central nervous system (CNS) studies. Here, we critically discuss the use of zebrafish for modeling human psychiatric disorders in general, and highlight the topics for further in-depth consideration, in order to foster and (re)focus translational biological neuroscience research utilizing zebrafish. Recent developments in molecular biology research utilizing this model species have also been summarized here, collectively calling for a wider use of zebrafish in translational CNS disease modeling.


Assuntos
Doenças do Sistema Nervoso Central , Transtornos Mentais , Animais , Humanos , Peixe-Zebra/fisiologia , Sistema Nervoso Central/patologia , Modelos Animais , Doenças do Sistema Nervoso Central/patologia , Comportamento Animal , Modelos Animais de Doenças
19.
J Neurol ; 270(1): 446-459, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36152049

RESUMO

BACKGROUND: In multiple sclerosis (MS), determination of regional brain atrophy is clinically relevant. However, analysis of large datasets is rare because of the increased variability in multicenter data. PURPOSE: To compare different methods to correct for center effects. To investigate regional gray matter (GM) volume in relapsing-remitting MS in a large multicenter dataset. METHODS: MRI scans of 466 MS patients and 279 healthy controls (HC) were retrieved from the Italian Neuroimaging Network Initiative repository. Voxel-based morphometry was performed. The center effect was accounted for with different methods: (a) no correction, (b) factor in the statistical model, (c) ComBat method and (d) subsampling procedure to match single-center distributions. By applying the best correction method, GM atrophy was assessed in MS patients vs HC and according to clinical disability, disease duration and T2 lesion volume. Results were assessed voxel-wise using general linear model. RESULTS: The average residuals for the harmonization methods were 5.03 (a), 4.42 (b), 4.26 (c) and 2.98 (d). The comparison between MS patients and HC identified thalami and other deep GM nuclei, the cerebellum and several cortical regions. At single-center analysis, the thalami were always involved, whereas different other regions were found in each center. Cerebellar atrophy correlated with clinical disability, while deep GM nuclei atrophy correlated with T2-lesion volume. CONCLUSION: Harmonization based on subsampling more effectively decreased the residuals of the statistical model applied. In comparison with findings from single-center analysis, the multicenter results were more robust, highlighting the importance of data repositories from multiple centers.


Assuntos
Doenças do Sistema Nervoso Central , Esclerose Múltipla Recidivante-Remitente , Esclerose Múltipla , Humanos , Esclerose Múltipla/diagnóstico por imagem , Esclerose Múltipla/patologia , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Substância Cinzenta/diagnóstico por imagem , Substância Cinzenta/patologia , Esclerose Múltipla Recidivante-Remitente/diagnóstico por imagem , Esclerose Múltipla Recidivante-Remitente/patologia , Imageamento por Ressonância Magnética/métodos , Doenças do Sistema Nervoso Central/patologia , Atrofia/patologia
20.
CNS Neurosci Ther ; 29(2): 538-543, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36479826

RESUMO

INTRODUCTION: Data on structural brain changes after infection with SARS-CoV-2 is sparse. We postulate multiple sclerosis as a model to study the effects of SARS-CoV-2 on brain atrophy due to the unique availability of longitudinal imaging data in this patient group, enabling assessment of intraindividual brain atrophy rates. METHODS: Global and regional cortical gray matter volumes were derived from structural MRIs using FreeSurfer. A linear model was fitted to the measures of the matching pre-SARS-CoV-2 images with age as an explanatory variable. The residuals were used to determine whether the post-SARS-CoV-2 volumes differed significantly from the baseline. RESULTS: Fourteen RRMS patients with a total of 113 longitudinal magnetic resonance images were retrospectively analyzed. We found no acceleration of brain atrophy after infection with SARS-CoV-2 for global gray matter volume (p = 0.17). However, on the regional level, parahippocampal gyri showed a tendency toward volume reduction (p = 0.0076), suggesting accelerated atrophy during or after infection. CONCLUSIONS: Our results illustrate the opportunity of using longitudinal MRIs from existing MS registries to study brain changes associated with SARS-CoV-2 infections. We would like to address the global MS community with a call for action to use the available cohorts, reproduce the proposed analysis, and pool the results.


Assuntos
COVID-19 , Doenças do Sistema Nervoso Central , Esclerose Múltipla Recidivante-Remitente , Esclerose Múltipla , Humanos , Esclerose Múltipla/diagnóstico por imagem , SARS-CoV-2 , Estudos Retrospectivos , COVID-19/diagnóstico por imagem , COVID-19/patologia , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Substância Cinzenta/diagnóstico por imagem , Substância Cinzenta/patologia , Imageamento por Ressonância Magnética/métodos , Doenças do Sistema Nervoso Central/patologia , Atrofia/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...